If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+36x-6=0
a = 36; b = 36; c = -6;
Δ = b2-4ac
Δ = 362-4·36·(-6)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{15}}{2*36}=\frac{-36-12\sqrt{15}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{15}}{2*36}=\frac{-36+12\sqrt{15}}{72} $
| x^2+36x+180=0 | | (x-3)(x+6)=0 | | 0.08=0.07*x | | 25x+24x=110 | | 6x2+x+15=0 | | 6a+6=2a | | 4x-19=7x-19 | | 70=40t-4.9t^2 | | 6y-11=2y+21 | | 56=2(3x+x) | | 56=2(3x+4x) | | 603=-9(9z+14) | | 27x2+45x+18=0 | | Y=12x/3x+4 | | (x+4)^x=36 | | 5+x=39/7 | | -33+55x-77-22x+44=9 | | 8x/4-1=-11 | | 3x/5-(15x-5)/10=(11/10) | | (6x+4)(5x-4)=0 | | 9(c-6)=36 | | ((3x/5)/10))-(15x-5/)=(11/10) | | |2x-10|=0 | | –2x+8=3x–7 | | 2(3x-4)=11(x-3) | | 9x-6x=4x-10 | | 9x–6x=4x-10 | | 4x(2x+1=0 | | 4(5x+7)=42 | | 2(k^2)+2k-2=0 | | 4^x-6^x-208=0 | | 5(1.2-m)=2.4(-2m+2.1) |